PEMANFAATAN DATA INSTAGRAM UNTUK MENGETAHUI REPUTASI TEMPAT WISATA DI LOMBOK

  • Muhammad Azmi STMIK Syaikh Zainuddin NW Anjani
  • Amiruddin Khairul Huda MTI Universitas Amikom Yogyakarta
  • Arief Setyanto MTI Universitas Amikom Yogyakarta
Keywords: Python, Tourism, Naive Bayes Classifier.

Abstract

Social media currently has an extraordinary influence in decision making, including in the tourism industry to find out the reputation and popularity of a tourist destination. At present the use and use of social media is not only limited to entertainment media but also as a medium or a place to share information both information that is considered important or not important and neglected. In this study, we utilize data scattered through Instagram posts related to tourist destinations to be used as references to find out the reputation of tourist destinations on the island of Lombok. The data used comes from Instagram with a total of 600 datasets, using three keywords namely beach, dyke and hill. The method used is the Naive Bayes Classifier which will be used to classify postings and Instagram comments by classifying into positive, negative and neutral posts to tourist destinations. The results of this study can show that the accuracy of naive bayes is 59%, while tourist attractions or tourist destinations which are categorized as popular for the beach are Kuta Beach with 85% percentage and for the Gili category that is 47% Gili Air namely, mountain Mount Rinjani with a percentage of 60%.

References

Y. Mejova, “Sentiment Analysis : An Overview Comprehensive Exam Paper,” Science (80-. )., pp. 1–34,

F. Neri, C. Aliprandi, F. Capeci, M. Cuadros, and T. By, “Sentiment analysis on social media,” Proc. 2012

IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2012, pp. 919–926, 2012, doi: 10.1109/ASONAM.2012.164.

K. Lerman and R. Ghosh, “Information contagion: An empirical study of the spread of news on Digg and Twitter social networks,” ICWSM 2010 - Proc. 4th Int. AAAI Conf. Weblogs Soc. Media, pp. 90–97, 2010.

E. Jean and P. Ed, “Local and Global Responses to Disaster : # eqnz and the Christchurch Earthquake Associate Professor Axel Bruns ARC Centre of Excellence for Creative Industries & Innovation Queensland University of Technology , Brisbane , Australia ARC Centre of Excellenc,” Disaster Emerg. Manag. Conf. Conf. Proc.,

pp. 86–103, 2012.

M. S. Neethu and R. Rajasree, “Sentiment analysis in twitter using machine learning techniques,” 2013 4th

Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2013, 2013, doi: 10.1109/ICCCNT.2013.6726818.

V. Narayanan, I. Arora, and A. Bhatia, “Fast and accurate sentiment classification using an enhanced Naive Bayes model,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8206 LNCS, pp. 194–201, 2013, doi: 10.1007/978-3-642-41278-3_24.

P. Chesley, B. Vincent, L. Xu, and R. K. Srihari, “Using verbs and adjectives to automatically classify blog sentiment,” AAAI Spring Symp. - Tech. Rep., vol. SS-06-03, pp. 27–29, 2006.

M. Gamon, A. Aue, S. Corston-Oliver, and E. Ringger, “Pulse: Mining customer opinions from free text,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3646 LNCS, pp.

–132, 2005, doi: 10.1007/11552253_12.

“SENTIMENT CLASSIFICATION OF MOVIE REVIEWS USING LINGUISTIC PARSING Brian Eriksson CS 838 - Natural Language Processing Final Project Report,” pp. 4–9.

Liu.B, Opinion Mining. Chicago, United States of America, 2012.

Q. Ye, Z. Zhang, and R. Law, “Sentiment classification of online reviews to travel destinations by supervised machine learning approaches,” Expert Syst. Appl., vol. 36, no. 3 PART 2, pp. 6527–6535, 2009, doi: 10.1016/j.eswa.2008.07.035.

K. D. Mukhina, S. V. Rakitin, and A. A. Visheratin, “Detection of tourists attraction points using Instagram

profiles,” Procedia Comput. Sci., vol. 108, no. June, pp. 2378–2382, 2017, doi: 10.1016/j.procs.2017.05.131.

Y. Wang and B. Li, “Sentiment Analysis for Social Media Images,” Proc. - 15th IEEE Int. Conf. Data Min.

Work. ICDMW 2015, pp. 1584–1591, 2016, doi: 10.1109/ICDMW.2015.142.

A. Sinaga, “Implementasi Sentiment Analysis untuk Menentukan Tingkat Popularitas Tujuan Wisata,” Pros.

Semin. Nas. Teknol. dan Rekayasa Inf. Tahun 2017, no. November, pp. 24–25, 2017.

I. Rish, “An empirical study of the naive Bayes classifier,” Phys. Chem. Chem. Phys., vol. 3, no. 22, pp.

–4869, 2001, doi: 10.1039/b104835j.

M. Murnawan, “Pemanfaatan Analisis Sentimen Untuk Pemeringkatan Popularitas Tujuan Wisata,” J.

Penelit. Pos dan Inform., vol. 7, no. 2, p. 109, 2017, doi: 10.17933/jppi.2017.070203.

J. Ren, S. D. Lee, X. Chen, B. Kao, R. Cheng, and D. Cheung, “Naive bayes classification of uncertain data,”

Proc. - IEEE Int. Conf. Data Mining, ICDM, no. 60703110, pp. 944–949, 2009, doi:

1109/ICDM.2009.90.

E. W. Sandi Fajar Rodiyansyah, “Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota Bandung

Menggunakan Naive Bayesian Classification,” IJCCS, vol. Vol. 6, No.

J. Han and M. Kambe, Data Mining: Concepts and Techniques 2e, 2E ed. San Fransisco: Morgan Kaufmann Publishers, 2006.

and H. S. C. D. Manning, P. Raghavan, Introduction to Information Retrieval. California: Cambridge University Press, 2008.

K. Tan, Steinbach, Karpatne, “Data Mining : Data Lecture Notes for Chapter 2 Introduction to Data Mining by What is Data ?,” Ratio, 2004.

Published
2020-05-23
How to Cite
AzmiM., Amiruddin Khairul Huda, & Arief Setyanto. (2020). PEMANFAATAN DATA INSTAGRAM UNTUK MENGETAHUI REPUTASI TEMPAT WISATA DI LOMBOK. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 1(1), 39-46. https://doi.org/10.46764/teknimedia.v1i1.13
Section
Articles
Abstract viewed = 165 times
PDF downloaded = 205 times