PEMANFAATAN SAM DAN YOLOV8 UNTUK DETEKSI DAN SEGMENTATION MRI TUMOR OTAK

  • Ardiansyah Ardiansyah Universitas Muhammadiyah Klaten
  • Krisna Nuresa Qodri Universitas Muhammadiyah Klaten
  • Dion Al Banna Universitas Muhammadiyah Klaten
  • Muhammad Zulfikhar Al-Baihaqi Universitas Muhammadiyah Klaten
Keywords: YOLOv8, Instance Segmentation, MRI Brain Tumor, Segment Anything Model

Abstract

The development of artificial intelligence (AI) is specific to the field of Computer Vision (CV) to obtain information based on data contained in visual media. AI in the healthcare field such as image recognition and Deep Learning (DL) is a discussion that is often used as an object of research and development. The health sector Limitation is the emergence of AI utilization in the health sector, which encourages DL research. Segmentation Anything Model (SAM) and YOLOv8 are new algorithms introduced. Thus, this research aims to measure the utilization of SAM and YOLOv8 for making the detection and segmentation of Brain Tumor MRI data. Before the training process, researchers first compared roboflow segmentation and the SAM model. The dataset was labeled with a Bounding Box by experts. The dataset contains 455 gliomas, 550 meningiomas, and 620 pituitaries. The research concluded that the utilization of SAM greatly simplified the annotation process. The segmentation YOLOv8 obtained Box accuracy results for all classes of 86% precision, 87% Recall, 89% mAP50, and 71% mAP 50-95. The mask performance evaluation gets the results of 86% precision, 87% Recall, 89% mAP50, and 70% mAP50-95. The research obtained the YOLOv8n-seg model to get excellent results even though it is a tiny model of YOLOv8. This study found the glioma tumor class to be the class with the lowest results because the dataset used was not much. The researcher encourages other researchers to use data augmentation to increase the use of datasets for each class to provide better results.

References

[1] O. Wosner, G. Farjon, and A. Bar-Hillel, “Object detection in agricultural contexts: A multiple resolu-tion benchmark and comparison to human,” Com-put Electron Agric, vol. 189, p. 106404, 2021.
[2] A. I. B. Parico and T. Ahamed, “Real time pear fruit detection and counting using YOLOv4 models and deep SORT,” Sensors, vol. 21, no. 14, p. 4803, 2021.
[3] A. Ardiansyah and N. F. Hasan, “Deteksi dan Klasifikasi Penyakit Pada Daun Kopi Menggunakan Yolov7,” Jurnal Sisfokom (Sistem Informasi Dan Komputer), vol. 12, no. 1, pp. 30–35, 2023.
[4] D. I. Mulyana and M. A. I. Rowis, “Optimization of Text Mining Detection of Tajweed Reading Laws Using the Yolov8 Method on the Qur’an,” QALAMUNA: Jurnal Pendidikan, Sosial, dan Aga-ma, vol. 14, no. 2, pp. 1089–1110, 2022.
[5] A. J. London, “Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?,” Cell Rep Med, vol. 3, no. 5, 2022.
[6] S. Reddy, “Explainability and artificial intelligence in medicine,” Lancet Digit Health, vol. 4, no. 4, pp. e214–e215, 2022.
[7] R. B. Parikh and L. A. Helmchen, “Paying for artifi-cial intelligence in medicine,” NPJ Digit Med, vol. 5, no. 1, p. 63, 2022.
[8] D. W. Putranto, Andi Sunyoto, and Asro Nasiri, “PEMANFAATAN DEEP LEARNING UNTUK SEGMENTASI PARU-PARU DARI CITRA X-RAY DADA,” TEKNIMEDIA: Teknologi Informasi dan Multimedia, vol. 4, no. 2, pp. 144–150, Dec. 2023, doi: 10.46764/teknimedia.v4i2.114.
[9] J. G. M. Esgario, R. A. Krohling, and J. A. Ventura, “Deep learning for classification and severity esti-mation of coffee leaf biotic stress,” Comput Elec-tron Agric, vol. 169, Feb. 2020, doi: 10.1016/j.compag.2019.105162.
[10] S. Lu, B. Wang, H. Wang, L. Chen, M. Linjian, and X. Zhang, “A real-time object detection algorithm for video,” Computers & Electrical Engineering, vol. 77, pp. 398–408, 2019.
[11] W. Fang, L. Wang, and P. Ren, “Tinier-YOLO: A real-time object detection method for constrained environments,” IEEE Access, vol. 8, pp. 1935–1944, 2019.
[12] I. Giannakis, A. Bhardwaj, L. Sam, and G. Leonti-dis, “A flexible deep learning crater detection scheme using Segment Anything Model (SAM),” Ic-arus, vol. 408, Jan. 2024, doi: 10.1016/j.icarus.2023.115797.
[13] A. Kirillov et al., “Segment anything,” in Proceed-ings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4015–4026.
[14] S. J. A. Nugraha and B. Erfianto, “White Blood Cell Detection Using Yolov8 Integration with DETR to Improve Accuracy,” Sinkron: jurnal dan penelitian teknik informatika, vol. 8, no. 3, pp. 1908–1916, 2023.
[15] D. M. Toufiq, A. M. Sagheer, and H. Veisi, “Brain tumor identification with a hybrid feature extraction method based on discrete wavelet transform and principle component analysis,” Bulletin of Electri-cal Engineering and Informatics, vol. 10, no. 5, pp. 2588–2597, 2021.
[16] K. N. Qodri, I. Soesanti, and H. A. Nugroho, “Image analysis for MRI-based brain tumor classification using deep learning,” IJITEE (International Journal of Information Technology and Electrical Engi-neering), vol. 5, no. 1, pp. 21–28, 2021.
[17] N. M. Dipu, S. A. Shohan, and K. M. A. Salam, “Deep learning based brain tumor detection and classification,” in 2021 International conference on intelligent technologies (CONIT), IEEE, 2021, pp. 1–6.
[18] R. S. Passa, S. Nurmaini, and D. P. Rini, “YOLOv8 Based on Data Augmentation for MRI Brain Tu-mor Detection,” Scientific Journal of Informatics, vol. 10, no. 3, 2023.
[19] Y. Huang et al., “Segment anything model for med-ical images?,” Med Image Anal, vol. 92, Feb. 2024, doi: 10.1016/j.media.2023.103061.
[20] M. N. Sharma, “IMAGE AND VIDEO SEGMENTATION USING YOLO-NAS AND SEGMENT ANYTHING MODEL (SAM): MACHINE LEARNING,” International Research Journal of Modernization in Engineering Technol-ogy and Science, vol. 05, no. 10, 2023.
[21] Y. Liu, Y.-H. Wu, P. Wen, Y. Shi, Y. Qiu, and M.-M. Cheng, “Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation,” IEEE Trans Pattern Anal Mach In-tell, vol. 44, no. 3, pp. 1415–1428, Mar. 2022, doi: 10.1109/TPAMI.2020.3023152.
[22] A. Kumar, “Study and analysis of different segmen-tation methods for brain tumor MRI application,” Multimed Tools Appl, vol. 82, no. 5, pp. 7117–7139, Feb. 2023, doi: 10.1007/s11042-022-13636-y.
[23] M. M. Chanu, N. H. Singh, C. Muppala, R. T. Prabu, N. P. Singh, and K. Thongam, “Computer-aided de-tection and classification of brain tumor using YOLOv3 and deep learning,” Soft comput, vol. 27, no. 14, pp. 9927–9940, 2023.
[24] B. Selcuk and T. Serif, “Brain Tumor Detection and Localization with YOLOv8,” in 2023 8th Interna-tional Conference on Computer Science and Engi-neering (UBMK), IEEE, 2023, pp. 477–481.
[25] S. He et al., “Computer-vision benchmark segment-anything model (sam) in medical images: Accuracy in 12 datasets,” arXiv preprint arXiv:2304.09324, vol. 3, 2023.
[26] S. Sarker, A. Biswas, N. M. A. Al, M. S. Ali, S. Pup-pala, and S. Talukder, “Case Studies on X-ray Im-aging, MRI and Nuclear Imaging,” Data Driven Ap-proaches on Medical Imaging, pp. 207–225, 2023.
[27] K. Priyadharshini, P. Krishnamoorthy, B. S. Ga-napathy N, K. Karthikeyan, U. M. S, and R. Ped-daveni, “Artificial Intelligence Assisted Improved Design to Predict Brain Tumor on Earlier Stages us-ing Deep Learning Principle,” in 2023 Annual Inter-national Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS), IEEE, Nov. 2023, pp. 1–6. doi: 10.1109/AICERA/ICIS59538.2023.10420011.
[28] T. A. Soomro et al., “Image Segmentation for MR Brain Tumor Detection Using Machine Learning: A Review,” IEEE Rev Biomed Eng, vol. 16, pp. 70–90, 2023, doi: 10.1109/RBME.2022.3185292.
[29] A. Ahmed and K. M. Hamza, “Labeled MRI brain Tumor dataset,” Kaggel. Accessed: Feb. 14, 2024. [Online]. Available: https://www.kaggle.com/datasets/ammarahmed310/labeled-mri-brain-tumor-dataset
[30] P. Skalski, “How to Use the Segment Anything Model (SAM). Roboflow Blog,” roboflow. Ac-cessed: Mar. 14, 2024. [Online]. Available: https://blog.roboflow.com/how-to-use-segment-anything-model-sam/
[31] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8.” 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
[32] R. Bai, M. Wang, Z. Zhang, J. Lu, and F. Shen, “Au-tomated Construction Site Monitoring Based on Improved YOLOv8-seg Instance Segmentation Al-gorithm,” IEEE Access, vol. 11, pp. 139082–139096, 2023, doi: 10.1109/ACCESS.2023.3340895.
[33] B. Gouila, “Instance Segmentation for Rock Particle Quality Monitoring: Integration of Deep Learning for Machine Vision Application in the Aggregates Industry,” 2024.
[34] A. M. Hafiz and G. M. Bhat, “A survey on instance segmentation: state of the art,” Int J Multimed Inf Retr, vol. 9, no. 3, pp. 171–189, Sep. 2020, doi: 10.1007/s13735-020-00195-x.
Published
2024-06-18
How to Cite
Ardiansyah, A., Qodri, K. N., Banna, D. A., & Al-Baihaqi, M. Z. (2024). PEMANFAATAN SAM DAN YOLOV8 UNTUK DETEKSI DAN SEGMENTATION MRI TUMOR OTAK. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 5(1), 82-89. https://doi.org/10.46764/teknimedia.v5i1.192
Section
Articles
Abstract viewed = 97 times
PDF downloaded = 120 times