IMPLEMENTASI ALGORITMA MACHINE LEARNING UNTUK DETEKSI PERFORMA AKADEMIK MAHASISWA
Abstract
Student academic performance is a key indicator of successful study program management. Detection of academic performance can help study program managers monitor and take proactive action against students who are potentially experiencing difficulties. Machine learning can be a solution to this challenge by assisting in the classification and detection of students' academic abilities. Machine learning techniques have proven to be very effective in analyzing complex data and uncovering hidden patterns that are difficult to detect by humans. This research aims to explore the implementation of machine learning algorithms in detecting students' academic performance, especially in the Mathematics Education Study Program at Nias University. With the advancement of technology, machine learning has proven to be effective in classifying data and detecting hidden patterns that traditional methods cannot identify. This research uses the Support Vector Machine (SVM) algorithm to predict student academic performance based on a dataset collected from student primary data. The dataset includes factors such as GPA, attendance, participation, and use of learning resources. The analysis results show that the SVM model used has an accuracy of 77.59%, with a bias that is more inclined to the class of students with good academic performance. The results of this study are expected to make a practical contribution in the development of more effective learning methods and personalization of academic interventions in higher education.
References
[1] Al Husaini, Y., Syufiza, N., Shukor, A., Said, Y. N., & Husaini, A. (2022). Factors Affecting Students’ Academic Performance: A review. Social Science Journal, 12(3), 6. https://www.researchgate.net/publication/367360842
[2] Almita, Tahir, M., & Hajjad, M. N. (2023). Employee Performance and the Impact of Workplace Facilities and Discipline. Jurnal Manajemen Bisnis, 10(2), 417–425.
[3] Aspiah, R., & Taghfirul Azhima Yoga Siswa. (2022). Implementasi Correlation Based Feature Selection (Cfs) Untuk Peningkatan Akurasi Algoritma C4.5 Dalam Prediksi Performa Akademik Mahasiswa Berbasis Learning Management System. Jurnal Ilmiah Betrik, 13(2), 199–207. https://doi.org/10.36050/betrik.v13i2.523
[4] Banerjee, A., Chen, S., Fatemifar, G., Zeina, M., Lumbers, R. T., Mielke, J., Gill, S., Kotecha, D., Freitag, D. F., Denaxas, S., & Hemingway, H. (2021). Machine learning for subtype definition and risk prediction in heart failure, acute coronary syndromes and atrial fibrillation: systematic review of validity and clinical utility. BMC Medicine, 19(1), 1–14. https://doi.org/10.1186/s12916-021-01940-7
[5] Fatimah, S., Manuardi, A. R., & Meilani, R. (2021). Tingkat Efikasi Diri Performa Akademik Mahasiswa Ditinjau Dari Perspektif Dimensi Bandura. Prophetic : Professional, Empathy, Islamic Counseling Journal, 4(1), 25. https://doi.org/10.24235/prophetic.v4i1.8753
[6] Firman Akbar, & Rahmaddeni. (2022). Komparasi Algoritma Machine Learning Untuk Memprediksi Penyakit Alzheimer. Jurnal Komputer Terapan, 8(2), 236–245. https://doi.org/10.35143/jkt.v8i2.5713
[7] Li, J., Xue, E., Li, C., & He, Y. (2023). Investigating Latent Interactions between Students’ Affective Cognition and Learning Performance: Meta-Analysis of Affective and Cognitive Factors. Behavioral Sciences, 13(7). https://doi.org/10.3390/bs13070555
[8] Munjirin, A., & Iswinarti. (2023). Faktor-Faktor yang Mempengaruhi Prestasi Akademik Remaja. Cognicia, 11(2), 106–111. https://doi.org/10.22219/cognicia.v11i2.29010
[9] Suriani, U. (2023). Penerapan Data Mining untuk Memprediksi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4.5. Journalcisa, 3(2), 55–66. http://jesik.web.id/index.php/jesik/article/view/91
[10] Vera Wati, Yuliana, Nisrina Yulia Setyowati, & Mudawil Qulub. (2023). Deteksi Wajah Menggunakan Algoritma Viola Jones Berbasis Android. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 4(1), 30–37. https://doi.org/10.46764/teknimedia.v4i1.92
Copyright (c) 2024 TEKNIMEDIA: Teknologi Informasi dan Multimedia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis. Jurnal Teknimedia memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Teknimedia dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan.
Jurnal TEKNIMEDIA : Teknologi Informasi dan Multimedia is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional