ANALISIS KOMPARATIF KLASIFIKASI SENTIMEN PENGGUNA APLIKASI INVESTASI MENGGUNAKAN ALGORITMA HYBRID CNN-LSTM, CNN-GRU DENGAN IMPLEMENTASI SMOTE
Abstract
Sentiment analysis, a branch of Natural Language Processing (NLP), plays a crucial role in identifying and classifying opinions embedded in text. This study aims to compare the performance of hybrid CNN-LSTM and CNN-GRU models in sentiment analysis of user reviews for investment applications on Google Play Store, utilizing the Synthetic Minority Over-sampling Technique (SMOTE) to address data imbalance. A total of 15,000 user reviews were collected through web scraping, preprocessed using the TF-IDF method and various text cleaning techniques. The CNN-LSTM and CNN-GRU models were evaluated using an 80%-20% train-test split. The evaluation results showed that CNN-GRU outperformed in terms of precision (91.62%), F1 score (90.45%), and overall accuracy (87.60%), while CNN-LSTM excelled in recall (91.08%) for detecting positive reviews. CNN-GRU was deemed more balanced in detecting both positive and negative sentiments, making it a more reliable choice for sentiment analysis requiring uniform performance
Copyright (c) 2025 TEKNIMEDIA: Teknologi Informasi dan Multimedia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis. Jurnal Teknimedia memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Teknimedia dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan.
Jurnal TEKNIMEDIA : Teknologi Informasi dan Multimedia is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional