Comparison Of K-Means And Hierachical Clustering Methods Performance In System Boarding Costs Selection Recommendations

  • Aiman Ayadi Magister Teknik Informatika Universitas Amikom Yogyakarta
  • Kusrini Magister Teknik Informatika Universitas Amikom Yogyakarta
  • Eko Pramono Magister Teknik Informatika Universitas Amikom Yogyakarta
Keywords: boarding, students, hierachical, K-Means, Naïve Bayes

Abstract

The development of technology is currently getting more advanced and growing faster, especially in the field of information technology. The existence of houses in the vicinity of public facilities is very desirable and beneficial for newcomers to a new area. One of the public facilities that usually have boarding is a university or college. Students who study at a university do not only come from within the city but also come from outside the region. However, most students from outside the region have difficulty choosing boarding or rented houses due to limited information. Limited information about the facilities and the inaccuracy of boarding houses becomes a difficulty at the beginning for those who are new students. With the advancement of information technology, it can answer the need for finding a boarding house, and will be very helpful both from the side of the owner and tenant. To solve complex problems, you can use the K-Means Clustering and Hierarchical Clustering algorithm models that are optimized with naïve Bayes. The final result of this study is that the K-Means and naïve bayes accuracy values ​​are higher with 90.82% accuracy, 90.56% precision, 90.68% recall and longer time that is 10 seconds, while for hierachical and naïve values. Bayes got 88.02% accuracy, 87.82% precision, 88.00% recall and 7.6 seconds faster time

References

[1] Fandy. O. S., Banu. W. Y., Saptadi. N., (2017), Ana-lisis Sentimen untuk Komentar pada Sistem Pencarian Kost Menggunakan Metode Support Vector Machine (SVM), Techno Jurnal Ilmiah Elektroteknika Vol. 16 No. 1 April 2017 Hal 41 – 47.
[2] Agus. P. W., (2017), Penerapan Data Mining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering, Techno.COM, Vol. 16, No. 4, November 2017 : 348-3577.
[3] Kusdarnowo. H., Andi. C., Siti. A., (2020): Pencarian Lokasi Perumahan Berdekatan Dengan Fasilitas Kesehatan Dan Belanja Menggunakan Algoritma K-Means, Jurnal IKRA-ITH Informatika Vol 4 No 1, Maret 2020.
[4] Rizal. T. A, Miftahul. J., (2018): Pencarian Kemiripan Judul Tugas Akhir Mahasiswa Dengan Menggunakan Metode Single Linkage Hierarchical, urnal SAINTEKOM Volume 8 Nomor 1, Maret 2018.
[5] R Handoyo, R Mangkudjaja, SM Nasution (2014), Perbandingan Metode Clustering Menggunakan Metode Single Linkage Dan K - Means Pada Pengelompokan Dokumen, Jurnal Sifo Mikroskil, Vol 15, No 2, Ok-tober 2014.
[6] Intan. W. H., Imelda. A., Anisa H., (2018). Analisis Dan Implementasi Algoritma Agglomerative Hierar-chical Clustering Untuk Deteksi Komunitas Pada Me-dia Sosial Facebook. e-Proceeding of Engineering : Vol.5, No.1 Maret 2018 | Page 1460.
Published
2021-01-02
How to Cite
Aiman Ayadi, Kusrini, & Eko Pramono. (2021). Comparison Of K-Means And Hierachical Clustering Methods Performance In System Boarding Costs Selection Recommendations. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 1(2), 51-56. https://doi.org/10.46764/teknimedia.v1i2.27
Abstract viewed = 372 times
PDF downloaded = 1296 times