Comparison Of K-Means And Hierachical Clustering Methods Performance In System Boarding Costs Selection Recommendations
Abstract
The development of technology is currently getting more advanced and growing faster, especially in the field of information technology. The existence of houses in the vicinity of public facilities is very desirable and beneficial for newcomers to a new area. One of the public facilities that usually have boarding is a university or college. Students who study at a university do not only come from within the city but also come from outside the region. However, most students from outside the region have difficulty choosing boarding or rented houses due to limited information. Limited information about the facilities and the inaccuracy of boarding houses becomes a difficulty at the beginning for those who are new students. With the advancement of information technology, it can answer the need for finding a boarding house, and will be very helpful both from the side of the owner and tenant. To solve complex problems, you can use the K-Means Clustering and Hierarchical Clustering algorithm models that are optimized with naïve Bayes. The final result of this study is that the K-Means and naïve bayes accuracy values are higher with 90.82% accuracy, 90.56% precision, 90.68% recall and longer time that is 10 seconds, while for hierachical and naïve values. Bayes got 88.02% accuracy, 87.82% precision, 88.00% recall and 7.6 seconds faster time
References
[2] Agus. P. W., (2017), Penerapan Data Mining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering, Techno.COM, Vol. 16, No. 4, November 2017 : 348-3577.
[3] Kusdarnowo. H., Andi. C., Siti. A., (2020): Pencarian Lokasi Perumahan Berdekatan Dengan Fasilitas Kesehatan Dan Belanja Menggunakan Algoritma K-Means, Jurnal IKRA-ITH Informatika Vol 4 No 1, Maret 2020.
[4] Rizal. T. A, Miftahul. J., (2018): Pencarian Kemiripan Judul Tugas Akhir Mahasiswa Dengan Menggunakan Metode Single Linkage Hierarchical, urnal SAINTEKOM Volume 8 Nomor 1, Maret 2018.
[5] R Handoyo, R Mangkudjaja, SM Nasution (2014), Perbandingan Metode Clustering Menggunakan Metode Single Linkage Dan K - Means Pada Pengelompokan Dokumen, Jurnal Sifo Mikroskil, Vol 15, No 2, Ok-tober 2014.
[6] Intan. W. H., Imelda. A., Anisa H., (2018). Analisis Dan Implementasi Algoritma Agglomerative Hierar-chical Clustering Untuk Deteksi Komunitas Pada Me-dia Sosial Facebook. e-Proceeding of Engineering : Vol.5, No.1 Maret 2018 | Page 1460.
Copyright (c) 2021 TEKNIMEDIA: Teknologi Informasi dan Multimedia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis. Jurnal Teknimedia memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Teknimedia dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan.
Jurnal TEKNIMEDIA : Teknologi Informasi dan Multimedia is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional