NORMALISASI DATA UNTUK EFISIENSI K-MEANS PADA PENGELOMPOKAN WILAYAH BERPOTENSI KEBAKARAN HUTAN DAN LAHAN BERDASARKAN SEBARAN TITIK PANAS

  • Ahmad Harmain Universitas Amikom Yogyakarta
  • Paiman Paiman MTI Universitas Amikom Yogyakarta
  • Henri Kurniawan MTI Universitas Amikom Yogyakarta
  • Kusrini Kusrini MTI Universitas Amikom Yogyakarta
  • Dina Maulina MTI Universitas Amikom Yogyakarta
Keywords: K-Means, MODIS, Silhouette Coefficient, Davies Bouldin Index

Abstract

The Indonesian region is part of the tropics which has a very high fire potential, especially during the dry season, so it is necessary to take concrete steps to mitigate so that the potential for forest fires is minimized. To do this, a more advanced and up-to-date technological method is needed to map areas that have a high potential for forest fires. The imaging and information system from the satellite system (MODIS) is one of the information about the condition of the earth's surface, namely the parameters of Latitude, Longitude, Brightness, FRP (Fire Radiative Power), and Confidence, which can be used as the basis for grouping an area as having a fire potential or not. K-Means is a method in machine learning that can be used as a method for grouping these areas. Accuracy in testing the results of the K-Means grouping can be tested using the Davies Bouldin Index (DBI) and Silhouette Coefficient methods.

References

[1] A. C. Rahayu, “COP26 Sepakati Jaga Pemanasan Global Tidak Lebih dari 1,5 Derajat Celcius,” kontan.co.id, 2021. https://internasional.kontan.co.id/news/cop26-sepakati-jaga-pemanasan-global-tidak-lebih-dari-15-derajat-celcius (accessed Dec. 25, 2021).
[2] Rodney J. Keenan, “Climate Change Impacts and Adaptation in Forest Management: a review,” Annals of Forest Science 72, pp. 145–167, 2015, Accessed: Dec. 26, 2021. [Online]. Available: https://link.springer.com/article/10.1007/s13595-014-0446-5
[3] K. A. DS, P. Sofan, S. Suwarsono, I. Prasasti, and F. Yulianto, Evaluasi Hasil Estimasi Suhu Udara dari Data Satelit NOAA-18 AVHRR di Pulau Sumatera, Kalimantan dan Jawa. JAKARTA TIMUR: LAPAN, 2015. Accessed: Dec. 24, 2021. [Online]. Available: https://onesearch.id/Record/IOS4589.slims-4617
[4] “About MODIS (Moderate Resolution Imaging Spectroradiometer),” MODIS (Moderate Resolution Imaging Spectroradiometer). https://modis.gsfc.nasa.gov/about/ (accessed Dec. 25, 2021).
[5] M. Armani and I. D. Wedhaswary, “Data Terkini Titik Panas di Indonesia dan Wilayah Asia Tenggara,” kompas.com, 2019. Accessed: Dec. 25, 2021. [Online]. Available: https://www.kompas.com/tren/read/2019/09/07/084506865/data-terkini-titik-panas-di-indonesia-dan-wilayah-asia-tenggara?page=all
[6] T. R. A. Sukamto Sukamto Ibnu Daqiqil Id, “Penentuan Daerah Rawan Titik Api Di Provinsi Riau Menggunakan Clustering Algoritma K-Means,” JUITA, vol. 6, no. 2, pp. 137–148, 2018, [Online]. Available: http://jurnalnasional.ump.ac.id/index.php/JUITA/article/view/3172
[7] A. Athifaturrofifah, R. Goejantoro, and D. Yuniarti, “Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas,” EKSPONENSIAL, vol. 10, no. 2, pp. 143–152, 2020, [Online]. Available: http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/572
[8] U. K. Krisman Pratama Simanjuntak, “Pengelompokkan Titik Api di Provinsi Jambi dengan Algoritma Agglomerative Hierarchical Clustering,” MALCOM, vol. 1, no. 1, pp. 7–16, 2021, [Online]. Available: https://journal.irpi.or.id/index.php/malcom/article/view/6/9
[9] P. Dangeti, Statistics for Machine Learning: Techniques for exploring supervised, unsupervised, and reinforcement learning models with Python and RJuly 2017. Packt Publishing, 2017.
[10] S. Nawrin, M. R. Rahman, and S. Akhter, “Exploreing K-Means with Internal Validity Indexes for Data Clustering in Traffic Management System,” International Journal of Advanced Computer Science and Applications, vol. 8, no. 3, 2017, doi: 10.14569/IJACSA.2017.080337.
[11] A. Bates and J. Kalita, “Counting Clusters in Twitter Posts,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, 2016, pp. 1–9.
Published
2022-01-08
How to Cite
Ahmad Harmain, Paiman, P., Kurniawan, H., Kusrini, K., & Dina Maulina. (2022). NORMALISASI DATA UNTUK EFISIENSI K-MEANS PADA PENGELOMPOKAN WILAYAH BERPOTENSI KEBAKARAN HUTAN DAN LAHAN BERDASARKAN SEBARAN TITIK PANAS. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 2(2), 83-89. https://doi.org/10.46764/teknimedia.v2i2.49
Abstract viewed = 138 times
PDF downloaded = 246 times