VISUALISASI KATA KUNCI PEMBERITAAN PEMILU 2024 MENGGUNAKAN SCAPY DAN WORDCLOUD

  • M. Iqbal Arif Chandra Sistem Informasi, STMIK Dharmawacana Metro
  • Ridwan Yusuf Sistem Informasi, STMIK Dharmawacana Metro
Keywords: Google Custom Searc, Keyword Visualization, Spacy, Text Processing, WordCloud

Abstract

In the digital information age, understanding relevant keywords in internet search results has become increasingly important. This article discusses the analysis of keywords from Google Custom Search results using the text processing tool Spacy and the WordCloud visualization technique. This method allows for more effective processing and presentation of keywords, assisting users in understanding the essence of various search queries. The experimental results demonstrate that this approach can reveal the most significant keywords in search results, helping users identify trends and focus on topics that appear in their searches. Thus, this article provides insights into enhancing the understanding of keywords in internet search results with the assistance of powerful text processing and visualization tools.

References

[1] S. Schultheiß and D. Lewandowski, “Misplaced trust? The relationship between trust, ability to identify commercially influenced results and search engine preference,” Journal of Information Science, p. 016555152110141, May 2021, doi: https://doi.org/10.1177/01655515211014157.
[2] R. Fletcher, A. Kalogeropoulos, and R. K. Nielsen, “More diverse, more politically varied: How social media, search engines and aggregators shape news repertoires in the United Kingdom,” New Media & Society, p. 146144482110273, Jul. 2021, doi: https://doi.org/10.1177/14614448211027393.
[3] D. Lewandowski and S. Schultheiß, “Public awareness and attitudes towards search engine optimization,” Behaviour & Information Technology, pp. 1–20, Apr. 2022, doi: https://doi.org/10.1080/0144929x.2022.2056507.
[4] M. L. Wilson, “From Keyword Search to Exploration: Designing Future Search Interfaces for the Web,” Foundations and Trends® in Web Science, vol. 2, no. 1, pp. 1–97, 2010, doi: https://doi.org/10.1561/1800000003.
[5] K. El-Arini and C. Guestrin, “Beyond keyword search,” Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11, 2011, doi: https://doi.org/10.1145/2020408.2020479.
[6] F. Li, M. Li, P. Guan, S. Ma, and L. Cui, “Mapping Publication Trends and Identifying Hot Spots of Re-search on Internet Health Information Seeking Behavior: A Quantitative and Co-Word Biclustering Analysis,” Journal of Medical Internet Research, vol. 17, no. 3, p. e81, Mar. 2015, doi: https://doi.org/10.2196/jmir.3326.
[7] Z. Xiang, D. Wang, J. T. O’Leary, and D. R. Fesenmaier, “Adapting to the Internet,” Journal of Travel Research, vol. 54, no. 4, pp. 511–527, Feb. 2014, doi: https://doi.org/10.1177/0047287514522883.
[8] A. Badgujar, A. Shaikh, T. Kamble, and Geeta Makhija, “TEXT SUMMARIZATION USING NATURAL LANGUAGE PROCESSING,” Open Access, Fully Refereed International Journal ) www.irjmets.com @International Research Journal of Modernization in Engineering, vol. 3712, pp. 2582–5208, Accessed: Nov. 06, 2023. [Online]. Available: https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2023/39262/final/fin_irjmets1684236331.pdf
[9] S. JUGRAN, A. KUMAR, B. S. TYAGI, and V. ANAND, “Extractive Automatic Text Summarization using SpaCy in Python amp; NLP,” IEEE Xplore, Mar. 01, 2021. https://ieeexplore.ieee.org/abstract/document/9404712?ca-sa_token=rBhjhqZWc8QAAAAA:JMig_8mLnPxCYQVUOsPqd7c6T00Q1rI00QXW1AoLCuM0UMtibJs-Uzdlke7NOgUc0VC4rPL7hQ (accessed Oct. 26, 2021).
[10] S. Lohmann, F. Heimerl, F. Bopp, M. Burch, and T. Ertl, “Concentri Cloud: Word Cloud Visualization for Multiple Text Documents,” 2015 19th International Conference on Information Visualisation, Jul. 2015, doi: https://doi.org/10.1109/iv.2015.30.
[11] F. Heimerl, S. Lohmann, S. Lange, and T. Ertl, “Word Cloud Explorer: Text Analytics Based on Word Clouds,” 2014 47th Hawaii International Conference on System Sciences, Jan. 2014, doi: https://doi.org/10.1109/hicss.2014.231.
[12] M. Huber, M. Nöllenburg, and Anaïs Villedieu, “MySemCloud: Semantic-aware Word Cloud Editing,” arXiv (Cornell University), Apr. 2023, doi: https://doi.org/10.1109/pacificvis56936.2023.00024.
[13] T. Tupari, S. Abdullah, and C. Chairani, “Vi-sualisasi Data Analisa Sentimen RUU Omni-bus Law Kesehatan Menggunakan KNN den-gan Software RapidMiner,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 261–268, Sep. 2023, doi: https://doi.org/10.30591/jpit.v8i3.5641.
[14] Anggi Hanafiah, Arbi Haza Nasution, Yudhi Arta, Rizky Wandri, Hafiza Oktasia Nasu-tion, and Jerika Mardafora, “Sentimen Anali-sis Terhadap Customer Review Produk Sho-pee Berbasis Wordcloud Dengan Algoritma Naïve Bayes Classifier,” Intecoms, vol. 6, no. 1, pp. 230–236, Mar. 2023, doi: https://doi.org/10.31539/intecoms.v6i1.5845.
[15] A. H. Yuanti, “Analisis Pengaruh Covid-19 Terhadap Kesehatan Mental Dengan Visualisasi Data Rapidminer,” Gudang Jurnal Multidisiplin Ilmu, vol. 2, no. 1, pp. 183–187, Jan. 2024, doi: https://doi.org/10.59435/gjmi.v2i1.225.
Published
2024-06-17
How to Cite
Arif Chandra, M. I., & Yusuf, R. (2024). VISUALISASI KATA KUNCI PEMBERITAAN PEMILU 2024 MENGGUNAKAN SCAPY DAN WORDCLOUD . TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 5(1), 41-46. https://doi.org/10.46764/teknimedia.v5i1.187
Section
Articles
Abstract viewed = 91 times
PDF downloaded = 84 times