VISUALISASI KATA KUNCI PEMBERITAAN PEMILU 2024 MENGGUNAKAN SCAPY DAN WORDCLOUD

  • M. Iqbal Arif Chandra Sistem Informasi, STMIK Dharmawacana Metro
  • Ridwan Yusuf Sistem Informasi, STMIK Dharmawacana Metro
Kata Kunci: Google Custom Search, Visualisasi Kata Kunci, Spacy, Pemrosesan Teks, WordCloud.

Abstrak

Dalam era informasi digital, pemahaman kata kunci yang relevan dalam hasil pencarian internet menjadi semakin penting. Artikel ini membahas analisis kata kunci dari hasil pencarian Google Custom Search dengan menggunakan alat pemrosesan teks Spacy dan teknik visualisasi WordCloud. Metode ini memungkinkan pemrosesan dan penyajian kata kunci dengan lebih efektif, membantu pengguna dalam memahami esensi dari berbagai query pencarian. Hasil eksperimen menunjukkan bahwa pendekatan ini dapat mengungkapkan kata kunci yang paling signifikan dalam hasil pencarian, membantu pengguna untuk mengidentifikasi tren dan fokus topik yang muncul dalam hasil pencarian mereka. Dengan demikian, artikel ini memberikan wawasan tentang cara meningkatkan pemahaman terhadap kata kunci dalam hasil pencarian internet, dengan bantuan alat-alat pemrosesan teks dan visualisasi yang kuat.

Referensi

[1] S. Schultheiß and D. Lewandowski, “Misplaced trust? The relationship between trust, ability to identify commercially influenced results and search engine preference,” Journal of Information Science, p. 016555152110141, May 2021, doi: https://doi.org/10.1177/01655515211014157.
[2] R. Fletcher, A. Kalogeropoulos, and R. K. Nielsen, “More diverse, more politically varied: How social media, search engines and aggregators shape news repertoires in the United Kingdom,” New Media & Society, p. 146144482110273, Jul. 2021, doi: https://doi.org/10.1177/14614448211027393.
[3] D. Lewandowski and S. Schultheiß, “Public awareness and attitudes towards search engine optimization,” Behaviour & Information Technology, pp. 1–20, Apr. 2022, doi: https://doi.org/10.1080/0144929x.2022.2056507.
[4] M. L. Wilson, “From Keyword Search to Exploration: Designing Future Search Interfaces for the Web,” Foundations and Trends® in Web Science, vol. 2, no. 1, pp. 1–97, 2010, doi: https://doi.org/10.1561/1800000003.
[5] K. El-Arini and C. Guestrin, “Beyond keyword search,” Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11, 2011, doi: https://doi.org/10.1145/2020408.2020479.
[6] F. Li, M. Li, P. Guan, S. Ma, and L. Cui, “Mapping Publication Trends and Identifying Hot Spots of Re-search on Internet Health Information Seeking Behavior: A Quantitative and Co-Word Biclustering Analysis,” Journal of Medical Internet Research, vol. 17, no. 3, p. e81, Mar. 2015, doi: https://doi.org/10.2196/jmir.3326.
[7] Z. Xiang, D. Wang, J. T. O’Leary, and D. R. Fesenmaier, “Adapting to the Internet,” Journal of Travel Research, vol. 54, no. 4, pp. 511–527, Feb. 2014, doi: https://doi.org/10.1177/0047287514522883.
[8] A. Badgujar, A. Shaikh, T. Kamble, and Geeta Makhija, “TEXT SUMMARIZATION USING NATURAL LANGUAGE PROCESSING,” Open Access, Fully Refereed International Journal ) www.irjmets.com @International Research Journal of Modernization in Engineering, vol. 3712, pp. 2582–5208, Accessed: Nov. 06, 2023. [Online]. Available: https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2023/39262/final/fin_irjmets1684236331.pdf
[9] S. JUGRAN, A. KUMAR, B. S. TYAGI, and V. ANAND, “Extractive Automatic Text Summarization using SpaCy in Python amp; NLP,” IEEE Xplore, Mar. 01, 2021. https://ieeexplore.ieee.org/abstract/document/9404712?ca-sa_token=rBhjhqZWc8QAAAAA:JMig_8mLnPxCYQVUOsPqd7c6T00Q1rI00QXW1AoLCuM0UMtibJs-Uzdlke7NOgUc0VC4rPL7hQ (accessed Oct. 26, 2021).
[10] S. Lohmann, F. Heimerl, F. Bopp, M. Burch, and T. Ertl, “Concentri Cloud: Word Cloud Visualization for Multiple Text Documents,” 2015 19th International Conference on Information Visualisation, Jul. 2015, doi: https://doi.org/10.1109/iv.2015.30.
[11] F. Heimerl, S. Lohmann, S. Lange, and T. Ertl, “Word Cloud Explorer: Text Analytics Based on Word Clouds,” 2014 47th Hawaii International Conference on System Sciences, Jan. 2014, doi: https://doi.org/10.1109/hicss.2014.231.
[12] M. Huber, M. Nöllenburg, and Anaïs Villedieu, “MySemCloud: Semantic-aware Word Cloud Editing,” arXiv (Cornell University), Apr. 2023, doi: https://doi.org/10.1109/pacificvis56936.2023.00024.
[13] T. Tupari, S. Abdullah, and C. Chairani, “Vi-sualisasi Data Analisa Sentimen RUU Omni-bus Law Kesehatan Menggunakan KNN den-gan Software RapidMiner,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 261–268, Sep. 2023, doi: https://doi.org/10.30591/jpit.v8i3.5641.
[14] Anggi Hanafiah, Arbi Haza Nasution, Yudhi Arta, Rizky Wandri, Hafiza Oktasia Nasu-tion, and Jerika Mardafora, “Sentimen Anali-sis Terhadap Customer Review Produk Sho-pee Berbasis Wordcloud Dengan Algoritma Naïve Bayes Classifier,” Intecoms, vol. 6, no. 1, pp. 230–236, Mar. 2023, doi: https://doi.org/10.31539/intecoms.v6i1.5845.
[15] A. H. Yuanti, “Analisis Pengaruh Covid-19 Terhadap Kesehatan Mental Dengan Visualisasi Data Rapidminer,” Gudang Jurnal Multidisiplin Ilmu, vol. 2, no. 1, pp. 183–187, Jan. 2024, doi: https://doi.org/10.59435/gjmi.v2i1.225.
Diterbitkan
2024-06-17
Bagian
Articles
Abstrak viewed = 229 times
PDF (English) downloaded = 168 times